TOPICS

Formulae

Matrices

1. Commutative Law : A + B = B + A 2. Associative Law : (A + B) + C = A + (B + C) 3. Existence of additive identity : A + O = O + A = A 4. Equivalence, if Reflexive, Symmetric, and Transitive Relation.

1. k(A + B) = kA + kB 2. A(k + l) = kA + kl

1. Associative Law : (A.B).C = A.(B.C) 2. Existence of multiplicative identity : AI = IA = A 3. Distributive Law : (i) A (B + C) = AB + AC and (ii) (A + B) C = AC + BC

1. (A')' = A 2. (kA)' = kA' 3. (A + B)' = A' + B' 4. (AB)' = A'B'

CLASSES